The list below is a selected (not exhaustive) bibliography of publications relevant to phytomining:

Bani, A.; Echevarria, G.; Montargès-Pelletier, E.; Gjoka, F.; Sulçe, S.; Morel, J. L. Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ. Monitor. Assess. 2014, 186, 4431–4442.

Bani, A.; Echevarria, G.; Sulçe, S.; Morel, J. L. Improving the agronomy of Alyssum murale for extensive phytomining: A five-year field study. Int. J. Phytoremed. 2015, 17, 117–127.

Bañuelos, G. S.; Arroyo, I.; Pickering, I. J., Yang, S. I.;  Freeman, J. L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chemistry. 2015, 166(C), 603–608. DOI: 10.1016/j.foodchem.2014.06.071

Barbaroux, R.; Mercier, G.; Blais, J. F.; Morel, J. L.; Simonnot, M-O. A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep. Purif. Technol. 2011, 83, 57–65.

Barbaroux, R.; Plasari, E.; Mercier, G.; Simonnot, M. O.; Morel, J. L.; Blais, J. F. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci. Total Environ. 2012, 423, 111–119.

Boominathan, R.; Saha-Chaudhury, N. M.; Sahajwalla, V.; Doran P. M. Production of nickel bio-ore from hyperaccumulator plant biomass: Applications in Phytomining. Biotechnol. Bioeng. 2004, 86, 243–250.

Chaney, R. L. Plant uptake of inorganic waste constituents. In: Land Treatment of Hazardous Wastes; Parr, J. F., Marsh, P. B., Kla, J.  M., Eds. Noyes Data Corp., Park Ridge, NJ. 1983, 50–76.

Chaney, R. L.; Angle, J. S.; Baker, A. J. M.; Li, Y.-M. Method for phytomining of nickel, cobalt and other metals from soil. US Patent 1998, 5, 711,784.

Chaney, R. L.; Angle, J. S.; Broadhurst, C. L.; Peters, C. A.; Tappero, R. V.; Sparks, D. L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 2007, 36, 1429–1443.

Echevarria, G.; Massoura, S.; Sterckeman, T.; Becquer, T.; Schwartz, C.; Morel, J.L. Assessment and control of the bioavailability of nickel in soils. Environ. Toxicol. Chem. 2006, 25, 643–651.

Escande, V.; Renard, B.-L.; Grison, C. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants. Environ Sci Pollut R. 2014, 1–20. DOI: 10.1007/s11356-014-3631-z

Jaffré T; Brooks, R. R.; Lee, J.; Reeves, R. D. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 1976, 193, 579–580. DOI: 10.1126/science.193.4253.579.

Jaffré T.; Schmid, M. Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Compt. Rendus Acad. Sci., Paris, 1974, 278, 1727–1730.

Jaffré, T.; Pillon, Y.; Thomine, S.; Merlot, S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front. Plant. Sci. 2013, 4, 279. DOI:10.3389/fpls.2013.00279/abstract

Keller, C.; Ludwig, C.; Davoli, F.; Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ. Sci. Technol. 2005, 39, 3359–3367.

Kirk, A. H. P.  The recovery of nickel from hyperaccumulator plant ash. M.Sc. Thesis, Massey University, Palmerston North, N.Z. 2000.

Koppolu, L.; Agblevor, F. A.; Clements L. D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 2003, 25, 651–663.

Li Y-M.; Chaney, R. L.; Brewer, E.; Roseberg, R. J.; Angle, J. S.; Baker, A. J. M.; Reeves, RD.; Nelkin, J. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 2003, 249, 107–115.

Li, Y-M.; Chaney, R.L.; Brewer, E.P.; Angle, J.S.; Nelkin, J.P. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on Ni-contaminated soils. Environ. Sci. Technol. 2003, 37, 1463–1468.

Losfeld G.; L’Huillier L.; Fogliani B.; McCoy S.; Grison C.; Jaffré T. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ Sci Pollut Res, 2014. In press. DOI: 10.1007/s11356-014-3445-z

Losfeld G.; Mathieu R.; L’Huillier L.; Fogliani B.; Jaffré T.; Grison C.; Phytoextraction from mine spoils: insights from New Caledonia. Environ Sci Pollut Res. 2014, In press. DOI: 10.1007/s11356-014-3866-8

Losfeld, G.; Escande, V.; Jaffré, T.; L’Huillier, L.; Grison, C. The chemical exploitation of nickel phytoextraction: an environmental and economic opportunity for New Caledonia. Chemosphere 2012, 89, 907–910.

Losfeld, G.; La Blache, de, P. V.; Escande, V.; Grison, C. Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev. 2012, 5(3), 451–456. DOI: 10.1080/17518253.2012.667157

Mercier G.; Barbaroux R.; Plasari E.; Blais J. F.  Simonnot M-O.; Morel J. L.; Procédé de production d’un sel de sulfate double de nickel et d’ammonium à partir de plantes hyperaccumulatrices. 2011. WO 2012/103651 A1. 

Nicks, L. J.; Chambers, M. F.  A pioneering study of the potential of phytomining for Ni. In: Plants that Hyperaccumulate Heavy Metals. Brooks, R. R., Ed. CAB International, Wallingford, Oxon, UK. 1998, 313–325.

Reeves R. D.; Adigüzel N. The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: a review with new data. Turk. J. Biol. 2008, 32, 143–153.

Reeves, R. D. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 2003, 249, 57–65.

Reeves, R. D.; Baker, A. J. M. Metal accumulating plants. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. I Raskin and B. D. Ensley Eds. Wiley & Sons, New York. 2000, 193–229.

Reeves, R. D.; Baker, A. J. M.; Borhidi, A.; Berazaín, R. Ni hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 1999, 83, 29–38.

Robinson, B. H.; Brooks, R. R.; Howes, A. W.; Kirkman, J. H.; Gregg, P. E. H. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J. Geochem. Explor. 1997, 60, 115–126.

Robinson, B.; Chiarucci, A.; Brooks, R.; Petit, D.; Kirkman, J.; Gregg, P.; De Dominicis, V. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of Ni. J. Geochem. Explor. 1997, 59, 75–86.

Van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L,
Echevarria G, Fogliani B, Mulligan D (2015) ‘Agromining’: farming for metals in the future? Environmental Science
and Technology 49(8): 4773–4780. DOI: 10.1021/es506031u

Van der Ent, A.; Baker, A. J. M.; Reeves, R. D.; Pollard, A. J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 2012, 362, 319–334.

Van der Ent, A.; Baker, A. J. M.; van Balgooy, M. M. J.; Tjoa, A. Ultramafic Ni laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. J. Geochem. Explor. 2013, 128, 72–79. DOI: 10.1016/j.gexplo.2013.01.009.

Van der Ent, A.; Erskine, P.; Sumail, S. Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 2015, (in press).

Zhang, X.; Houzelot, V.; Bani, A.; Morel, J. L.; Echevarria, G.; Simonnot, M.-O. Selection and combustion of nickel-hyperaccumulators for the phytomining process. Int. J. Phytoremed. 2014, 16, 1058–1072. DOI: 10.1080/15226514.2013.810585.